Compositional design and Taguchi optimization of hardness properties in silicone-based ocular lenses
نویسندگان
چکیده
A multi-component acrylate-based copolymer system especially designed for application as ocular lenses is developed through free-radical, bulk polymerization of a system containing hydroxyethyl methacrylate, methyl methacrylate, triethylene glycol dimethacrylate, dimethyl itaconate, 3-(trimethoxysilyl) propylmethacrylate, Polyhedraloligomeric silsesquioxane-acrylate (POSS-acrylate) and AIBN as an initiator. The progress of the reaction was monitored by Fourier transform infrared spectroscopy (FTIR). The effect of increasing concentration of the components on the hardness of the synthesized lenses was measured by Shore Durometer before and after immersion in PBS solutions. Extraction test method was performed to analyze the biocompatibility of the fabricated lenses. In this research the Taguchi method was employed to achieve the optimal hardness property which plays a critical role in final application of the lens materials. The Taguchi trial for ocular lens hardness was configured in an L16 orthogonal array, by five control factors, each with four level settings. The results showed that 3-(trimethoxysilyl) propyl methacrylate decreases and 2-hydroxyethylmethacrylate increases, polyhedraloligomeric silsesquioxane with a cage-like structure, methyl methacrylate and dimethyl itaconate increase the hardness. Proliferation and growth of the cells showed that there is no toxic substance extracted from the lenses which can interfere with the cell growth.
منابع مشابه
Correction to: Compositional design and Taguchi optimization of hardness properties in silicone-based ocular lenses
The original version of this article unfortunately contained a mistake: The spelling of the Ebrahim Gafar-Zadehs' name was incorrect. The corrected name is given above.
متن کاملOptimization of Hardness Strengths Response of Plantain Fibres Reinforced Polyester Matrix Composites (PFRP) Applying Taguchi Robust Design
Volume fraction of fibres (A), aspect ratio of fibres (B) and fibres orientation (C) are considered as control factors in the determination of hardness strength, hardness strength of plantain fiber reinforced polyester composites (PFR P). These properties were determined for plantain empty fruit bunch (PEFB) and plantain pseudo stem (PPS). Hardness tests were conducted on the replicated samples...
متن کاملOptimization mechanical properties of polyurethane/Sio2 nanocomposite on Polypropylene substrate for automotive clear coating by Taguchi method
The effect of different parameters including: nano silica content, curing temperature, type of hardener, and flash-off time on mechanical and optical properties of polyurethane PU based clearcoat was investigated via standard Taguchi L9 method. Dispersion of nano silica in the resultant nanocomposites was explored by scanning electron microscopy SEM. SEM images showed a fine dispersion through ...
متن کاملApplication of Taguchi design for optimization of corrosion behavior of amorphous silica thin film deposited through sol-gel dipping technique
Amorphous silica thin films were applied on the 316L stainless steel substrates by sol-gel dipping technique. The starting chemicals (TEOS, ethanol, HCl, PEG, and NaOH) were used to prepare a gel and then deposited on a substrate. The microstructure, topography, corrosion behavior, and surface hardness were investigated using SEM, AFM, electrochemical method, and micro-hardness measurements. Th...
متن کاملOptimization of gas metal arcwelding parameters of SS304 austenitic steel by Taguchi –Grey relational analysis
This study investigated the optimization of three welding parameters (wire feed speed, arc voltage, and shielding gas flow rate) for SS 304H by using Taguchi based Grey relational analysis. In this research work, pure argon was used as shielding gas. Numbers of trials were performed as per L16 (4xx3) orthogonal array design and the mechanical quality such ultimate tensile strength, microhardnes...
متن کامل